Implications of using the clinical target distribution as voxel-weights in radiation therapy optimization

Author:

Bengtsson IvarORCID,Forsgren AndersORCID,Fredriksson Albin

Abstract

Abstract Objective. Delineating and planning with respect to regions suspected to contain microscopic tumor cells is an inherently uncertain task in radiotherapy. The recently proposed clinical target distribution (CTD) is an alternative to the conventional clinical target volume (CTV), with initial promise. Previously, using the CTD in planning has primarily been evaluated in comparison to a conventionally defined CTV. We propose to compare the CTD approach against CTV margins of various sizes, dependent on the threshold at which the tumor infiltration probability is considered relevant. Approach. First, a theoretical framework is presented, concerned with optimizing the trade-off between the probability of sufficient target coverage and the penalties associated with high dose. From this framework we derive conventional CTV-based planning and contrast it with the CTD approach. The approaches are contextualized further by comparison with established methods for managing geometric uncertainties. Second, for both one- and three-dimensional phantoms, we compare a set of CTD plans created by varying the target objective function weight against a set of plans created by varying both the target weight and the CTV margin size. Main results. The results show that CTD-based planning gives slightly inefficient trade-offs between the evaluation criteria for a case in which near-minimum target dose is the highest priority. However, in a case when sparing a proximal organ at risk is critical, the CTD is better at maintaining sufficiently high dose toward the center of the target. Significance. We conclude that CTD-based planning is a computationally efficient method for planning with respect to delineation uncertainties, but that the inevitable effects on the dose distribution should not be disregarded.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3