Probabilistic definition of the clinical target volume—implications for tumor control probability modeling and optimization

Author:

Bortfeld ThomasORCID,Shusharina NadyaORCID,Craft DavidORCID

Abstract

Abstract Evidence has been presented that moving beyond the binary definition of clinical target volume (CTV) towards a probabilistic CTV can result in better treatment plans. The probabilistic CTV takes the likelihood of disease spread outside of the gross tumor into account. An open question is: how to optimize tumor control probability (TCP) based on the probabilistic CTV. We derive expressions for TCP under the assumptions of voxel independence and dependence. For the dependent case, we make the assumption that tumors grow outward from the gross tumor volume. We maximize the (non-convex) TCP under convex dose constraints for all models. For small numbers of voxels, and when a dose-influence matrix is not used, we use exhaustive search or Lagrange multiplier theory to compute optimal dose distributions. For larger cases we present (1) a multi-start strategy using linear programming with a random cost vector to provide random feasible starting solutions, followed by a local search, and (2) a heuristic strategy that greedily selects which subvolumes to dose, and then for each subvolume assignment runs a convex approximation of the optimization problem. The optimal dose distributions are in general different for the independent and dependent models even though the probabilities of each voxel being tumorous are set to the same in both cases. We observe phase transitions, where a subvolume is either dosed to a high level, or it gets ‘sacrificed’ by not dosing it at all. The greedy strategy often yields solutions indistinguishable from the multi-start solutions, but for the 2D case involving organs-at-risk and the dependent TCP model, discrepancies of around 5% (absolute) for TCP are observed. For realistic geometries, although correlated voxels is a more reasonable assumption, the correlation function is in general unknown. We demonstrate a tractable heuristic that works very well for the independent models and reasonably well for the dependent models. All data are provided.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference27 articles.

1. Analysis of the infiltrative features of chordoma: the relationship between micro-skip metastasis and postoperative outcomes;Akiyama;Ann. Surg. Oncol.,2018

2. Tumor and target delineation: current research and future challenges;Austin-Seymour;Int. J. Radiat. Oncol. Biol. Phys.,1995

3. Improving the quality, efficiency and robustness of radiation therapy planning and delivery through mathematical optimization;Balvert,2017

4. Radiation oncology in the era of precision medicine;Baumann;Nat. Rev. Cancer,2016

5. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function;Cardenas;Int. J. Radiat. Oncol. Biol. Phys.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3