Robust optimization strategies for contour uncertainties in online adaptive radiation therapy

Author:

Smolders AORCID,Bengtsson IORCID,Forsgren A,Lomax A,Weber D C,Fredriksson A,Albertini FORCID

Abstract

Abstract Objective. Online adaptive radiation therapy requires fast and automated contouring of daily scans for treatment plan re-optimization. However, automated contouring is imperfect and introduces contour uncertainties. This work aims at developing and comparing robust optimization strategies accounting for such uncertainties. Approach. A deep-learning method was used to predict the uncertainty of deformable image registration, and to generate a finite set of daily contour samples. Ten optimization strategies were compared: two baseline methods, five methods that convert contour samples into voxel-wise probabilities, and three methods accounting explicitly for contour samples as scenarios in robust optimization. Target coverage and organ-at-risk (OAR) sparing were evaluated robustly for simplified proton therapy plans for five head-and-neck cancer patients. Results. We found that explicitly including target contour uncertainty in robust optimization provides robust target coverage with better OAR sparing than the baseline methods, without increasing the optimization time. Although OAR doses first increased when increasing target robustness, this effect could be prevented by additionally including robustness to OAR contour uncertainty. Compared to the probability-based methods, the scenario-based methods spared the OARs more, but increased integral dose and required more computation time. Significance. This work proposed efficient and beneficial strategies to mitigate contour uncertainty in treatment plan optimization. This facilitates the adoption of automatic contouring in online adaptive radiation therapy and, more generally, enables mitigation also of other sources of contour uncertainty in treatment planning.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3