Dual-energy CT evaluation of 3D printed materials for radiotherapy applications

Author:

Fonseca Gabriel PORCID,Rezaeifar Behzad,Lackner Niklas,Haanen Britt,Reniers Brigitte,Verhaegen Frank

Abstract

Abstract Objective. There is a continuous increase in 3D printing applications in several fields including medical imaging and radiotherapy. Although there are numerous advantages of using 3D printing for the development of customized phantoms, bolus, quality assurance devices and other clinical applications, material properties are not well known and printer settings can affect considerably the properties (e.g. density, isotropy and homogeneity) of the printed parts. This study aims to evaluate several materials and printer properties to identify a range of tissue-mimicking materials. Approach. Dual-energy CT was used to obtain the effective atomic number (Z eff) and relative electron density (RED) for thirty-one different materials including different colours of the same filament from the same manufacturer and the same type of filament from different manufacturers. In addition, a custom bone equivalent filament was developed and evaluated since a high-density filament with a composition similar to bone is not commercially available. Printing settings such as infill density, infill pattern, layer height and nozzle size were also evaluated. Main results. Large differences were observed for HU (288), RED (>10%) and Z eff (>50%) for different colours of the same filament due to the colour pigment. Results show a wide HU variation (−714 to 1104), RED (0.277 to 1.480) and Z eff (5.22 to 12.39) between the printed samples with some materials being comparable to commercial tissue-mimicking materials and good substitutes to a range of materials from lung to bone. Printer settings can result in directional dependency and significantly affect the homogeneity of the samples. Significance. The use of DECT to extract RED, and Z eff allows for quantitative imaging and dosimetry using 3D printed materials equivalent to certified tissue-mimicking tissues.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3