Characterisation of 3D-printable thermoplastics to be used as tissue-equivalent materials in photon and proton beam radiotherapy end-to-end quality assurance devices

Author:

Bento MarianaORCID,Cook HannahORCID,Anaya Virginia MarinORCID,Bär EstherORCID,Nisbet AndrewORCID,Lourenço AnaORCID,Hussein MohammadORCID,Veiga CatarinaORCID

Abstract

Abstract Objective. To investigate the potential of 3D-printable thermoplastics as tissue-equivalent materials to be used in multimodal radiotherapy end-to-end quality assurance (QA) devices. Approach. Six thermoplastics were investigated: Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate Glycol (PETG), Polymethyl Methacrylate (PMMA), High Impact Polystyrene (HIPS) and StoneFil. Measurements of mass density ( ρ ), Relative Electron Density (RED), in a nominal 6 MV photon beam, and Relative Stopping Power (RSP), in a 210 MeV proton pencil-beam, were performed. Average Hounsfield Units (HU) were derived from CTs acquired with two independent scanners. The calibration curves of both scanners were used to predict average ρ , RED and RSP values and compared against the experimental data. Finally, measured data of ρ , RED and RSP was compared against theoretical values estimated for the thermoplastic materials and biological tissues. Main results. Overall, good ρ and RSP CT predictions were made; only PMMA and PETG showed differences >5%. The differences between experimental and CT predicted RED values were also <5% for PLA, ABS, PETG and PMMA; for HIPS and StoneFil higher differences were found (6.94% and 9.42/15.34%, respectively). Small HU variations were obtained in the CTs for all materials indicating good uniform density distribution in the samples production. ABS, PLA, PETG and PMMA showed potential equivalency for a variety of soft tissues (adipose tissue, skeletal muscle, brain and lung tissues, differences within 0.19%–8.35% for all properties). StoneFil was the closest substitute to bone, but differences were >10%. Theoretical calculations of all properties agreed with experimental values within 5% difference for most thermoplastics. Significance. Several 3D-printed thermoplastics were promising tissue-equivalent materials to be used in devices for end-to-end multimodal radiotherapy QA and may not require corrections in treatment planning systems’ dose calculations. Theoretical calculations showed promise in identifying thermoplastics matching target biological tissues before experiments are performed.

Funder

Royal Academy of Engineering

Royal Society

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3