Abstract
Abstract
Objective. Magnetic nanoparticles (MNPs) are a promising tool in biomedical applications such as cancer therapy and diagnosis, where localization and quantification of MNP distributions are often mandatory. This can be obtained by magnetorelaxometry imaging (MRXI). Approach. In this work, the capability of MRXI for quantitative imaging of MNP inside larger volumes such as a human head is investigated. We developed a human head phantom simulating a glioblastoma multiforme (GBM) tumor containing MNP for magnetic hyperthermia treatment. The sensitivity of our MRXI setup for detection of MNP concentrations in the range of 3–19 mg cm−3 was studied. Main result. The results show the high capability of MRXI to detect MNPs in a human head sized volume. Superficial sources with a concentration larger than 12 mg cm-3 could be reconstructed with a resulotion of about 1 cm-3. Significance. The reconstruction of the MNP distribution, mimicking a GBM tumor of 7 cm3 volume with clinically relevant iron concentration, demonstrates the in vivo feasibility of MRXI in humans.
Funder
Austrian Science Fund
Deutsche Forschungsgemeinschaft
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献