Temperature dependent magnetorelaxometry of magnetic nanoparticle ensembles

Author:

Arsalani SoudabehORCID,Radon Patricia,Eberbeck Dietmar,Körber RainerORCID,Jaufenthaler AaronORCID,Baumgarten DanielORCID,Wiekhorst Frank

Abstract

Abstract Magnetorelaxometry imaging (MRXI) is a non-invasive, quantitative imaging technique for magnetic nanoparticles (MNPs). The image resolution of this technique significantly depends on the relaxation amplitude (ΔB). For this work, we measured the room temperature (299 K) relaxation signals of eight commercial MNP sample systems with different magnetic properties, in both fluid and immobilized states, in order to select the most suitable sample for a particular MRXI setting. Additionally, the effect of elevated temperatures (up to hyperthermia temperature, 335 K) on the relaxation signals of four different MNP systems (Synomag, Perimag, BNF and Nanomag) in both states were investigated. The ΔB values of fluid samples significantly decreased with increasing temperature, and the behaviour for immobilized samples depended on their blocking temperature (T B). For samples with T B < 299 K, ΔB also decreased with increasing temperature. Whereas for samples with T B > 299 K, the opposite behaviour was observed. These results are beneficial for improving the image resolution in MRXI and show, among the investigated systems, and for our setup, Synomag is the best candidate for future in vitro and in vivo studies. This is due to its consistently high ΔB between 299 and 335 K in both states. Our findings demonstrate the feasibility of temperature imaging by MRXI.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3