SQUID current sensors with an integrated thermally actuated input current limiter

Author:

Körber RORCID,Krzysteczko P,Klemm M,Liu T,Storm J-H,Beyer J

Abstract

Abstract The development of superconducting quantum interference device (SQUID) current sensors with a thermally actuated input current limiter (TCL) integrated into the input circuit of the sensor is presented. The TCL is based on an unshunted Josephson Junction (JJ) series array, around which meanders a galvanically isolated, but tightly, thermally coupled, resistive heater element. By applying a current to the heater, the JJ critical currents can be reduced or completely suppressed, while the other on-chip SQUID circuit elements remain unaffected. The functional parameters of the TCL are determined by direct transport measurements and by static and dynamic flux coupling tests via the input circuit. In liquid helium, a heater power, which reliably suppresses the critical current of the JJ array to zero, of ∼1.5 mW was needed, with the TCL normal state resistance being at 500 Ω. In this configuration, typical TCL switching times of approximately 20 µs were observed in the direct transport measurements. The TCL can be used to temporarily or even permanently disable malfunctioning channels in multichannel SQUID magnetometer systems, when feedback into their otherwise superconducting input circuits is not possible. In doing so, significant signal distortions in neighbouring channels from screening currents in these input circuits are avoided. Furthermore, by completely suppressing and restoring the TCL critical current, dc offset currents in the superconducting input circuits can be prevented. This is relevant, for instance, in SQUID-based spin precession experiments on hyperpolarized noble gases, in which even dc currents of a few µA in the input circuit can lead to significant magnetic field distortions in the adjacent sample region contributing to the transverse spin-spin relaxation rate 1 / T 2 .

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3