Dynamic cone-beam CT reconstruction using spatial and temporal implicit neural representation learning (STINR)

Author:

Zhang YouORCID,Shao Hua-Chieh,Pan Tinsu,Mengke TieligeORCID

Abstract

Abstract Objective. Dynamic cone-beam CT (CBCT) imaging is highly desired in image-guided radiation therapy to provide volumetric images with high spatial and temporal resolutions to enable applications including tumor motion tracking/prediction and intra-delivery dose calculation/accumulation. However, dynamic CBCT reconstruction is a substantially challenging spatiotemporal inverse problem, due to the extremely limited projection sample available for each CBCT reconstruction (one projection for one CBCT volume). Approach. We developed a simultaneous spatial and temporal implicit neural representation (STINR) method for dynamic CBCT reconstruction. STINR mapped the unknown image and the evolution of its motion into spatial and temporal multi-layer perceptrons (MLPs), and iteratively optimized the neuron weightings of the MLPs via acquired projections to represent the dynamic CBCT series. In addition to the MLPs, we also introduced prior knowledge, in the form of principal component analysis (PCA)-based patient-specific motion models, to reduce the complexity of the temporal mapping to address the ill-conditioned dynamic CBCT reconstruction problem. We used the extended-cardiac-torso (XCAT) phantom and a patient 4D-CBCT dataset to simulate different lung motion scenarios to evaluate STINR. The scenarios contain motion variations including motion baseline shifts, motion amplitude/frequency variations, and motion non-periodicity. The XCAT scenarios also contain inter-scan anatomical variations including tumor shrinkage and tumor position change. Main results. STINR shows consistently higher image reconstruction and motion tracking accuracy than a traditional PCA-based method and a polynomial-fitting-based neural representation method. STINR tracks the lung target to an average center-of-mass error of 1–2 mm, with corresponding relative errors of reconstructed dynamic CBCTs around 10%. Significance. STINR offers a general framework allowing accurate dynamic CBCT reconstruction for image-guided radiotherapy. It is a one-shot learning method that does not rely on pre-training and is not susceptible to generalizability issues. It also allows natural super-resolution. It can be readily applied to other imaging modalities as well.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference70 articles.

1. Deep learning using rectified linear units (relu);Agarap,2018

2. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm;Andersen;Ultrason. Imaging,1984

3. Frequency bias in neural networks for input of non-uniform density;Basri,2020

4. Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT;Bergner;Med. Phys.,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3