Dynamic CBCT imaging using prior model-free spatiotemporal implicit neural representation (PMF-STINR)

Author:

Shao Hua-ChiehORCID,Mengke TieligeORCID,Pan Tinsu,Zhang YouORCID

Abstract

Abstract Objective. Dynamic cone-beam computed tomography (CBCT) can capture high-spatial-resolution, time-varying images for motion monitoring, patient setup, and adaptive planning of radiotherapy. However, dynamic CBCT reconstruction is an extremely ill-posed spatiotemporal inverse problem, as each CBCT volume in the dynamic sequence is only captured by one or a few x-ray projections, due to the slow gantry rotation speed and the fast anatomical motion (e.g. breathing). Approach. We developed a machine learning-based technique, prior-model-free spatiotemporal implicit neural representation (PMF-STINR), to reconstruct dynamic CBCTs from sequentially acquired x-ray projections. PMF-STINR employs a joint image reconstruction and registration approach to address the under-sampling challenge, enabling dynamic CBCT reconstruction from singular x-ray projections. Specifically, PMF-STINR uses spatial implicit neural representations to reconstruct a reference CBCT volume, and it applies temporal INR to represent the intra-scan dynamic motion of the reference CBCT to yield dynamic CBCTs. PMF-STINR couples the temporal INR with a learning-based B-spline motion model to capture time-varying deformable motion during the reconstruction. Compared with the previous methods, the spatial INR, the temporal INR, and the B-spline model of PMF-STINR are all learned on the fly during reconstruction in a one-shot fashion, without using any patient-specific prior knowledge or motion sorting/binning. Main results. PMF-STINR was evaluated via digital phantom simulations, physical phantom measurements, and a multi-institutional patient dataset featuring various imaging protocols (half-fan/full-fan, full sampling/sparse sampling, different energy and mAs settings, etc). The results showed that the one-shot learning-based PMF-STINR can accurately and robustly reconstruct dynamic CBCTs and capture highly irregular motion with high temporal (∼ 0.1 s) resolution and sub-millimeter accuracy. Significance. PMF-STINR can reconstruct dynamic CBCTs and solve the intra-scan motion from conventional 3D CBCT scans without using any prior anatomical/motion model or motion sorting/binning. It can be a promising tool for motion management by offering richer motion information than traditional 4D-CBCTs.

Funder

National Institutes of Health

Varian Medical Systems

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3