Surrogate-driven respiratory motion model for projection-resolved motion estimation and motion compensated cone-beam CT reconstruction from unsorted projection data

Author:

Huang YuliangORCID,Thielemans KrisORCID,Price Gareth,McClelland Jamie RORCID

Abstract

Abstract Objective. As the most common solution to motion artefact for cone-beam CT (CBCT) in radiotherapy, 4DCBCT suffers from long acquisition time and phase sorting error. This issue could be addressed if the motion at each projection could be known, which is a severely ill-posed problem. This study aims to obtain the motion at each time point and motion-free image simultaneously from unsorted projection data of a standard 3DCBCT scan. Approach. Respiration surrogate signals were extracted by the Intensity Analysis method. A general framework was then deployed to fit a surrogate-driven motion model that characterized the relation between the motion and surrogate signals at each time point. Motion model fitting and motion compensated reconstruction were alternatively and iteratively performed. Stochastic subset gradient based method was used to significantly reduce the computation time. The performance of our method was comprehensively evaluated through digital phantom simulation and also validated on clinical scans from six patients. Results. For digital phantom experiments, motion models fitted with ground-truth or extracted surrogate signals both achieved a much lower motion estimation error and higher image quality, compared with non motion-compensated results.For the public SPARE Challenge datasets, more clear lung tissues and less blurry diaphragm could be seen in the motion compensated reconstruction, comparable to the benchmark 4DCBCT images but with a higher temporal resolution. Similar results were observed for two real clinical 3DCBCT scans. Significance. The motion compensated reconstructions and motion models produced by our method will have direct clinical benefit by providing more accurate estimates of the delivered dose and ultimately facilitating more accurate radiotherapy treatments for lung cancer patients.

Funder

EPSRC i4health Centre for Doctoral Training in Medical Imaging

Elekta Ltd. Crawley

UK EPSRC

Overseas Research Scholarship, University College London

Wellcome / EPSRC Centre for Interventional and Surgical Sciences

CRUK Centres Network Accelerator Award Grant

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3