Abstract
Abstract
Objective. Deliverable proton spots are subject to the minimum monitor-unit (MMU) constraint. The MMU optimization problem with relatively large MMU threshold remains mathematically challenging due to its strong nonconvexity. However, the MMU optimization is fundamental to proton radiotherapy (RT), including efficient IMPT and proton arc delivery (ARC). This work aims to develop a new optimization algorithm that is effective in solving the MMU problem. Approach. Our new algorithm is primarily based on stochastic coordinate decent (SCD) method. It involves three major steps: first to decouple the determination of active sets for dose-volume-histogram (DVH) planning constraints from the MMU problem via iterative convex relaxation method; second to handle the nonconvexity of the MMU constraint via SCD to localize the index set of nonzero spots; third to solve convex subproblems projected to this convex set of nonzero spots via projected gradient descent method. Main results. Our new method SCD is validated and compared with alternating direction method of multipliers (ADMM) for IMPT and ARC. The results suggest SCD had better plan quality than ADMM, e.g. the improvement of conformal index (CI) from 0.56 to 0.69 during IMPT, and from 0.28 to 0.80 during ARC for the lung case. Moreover, SCD successfully handled the nonconvexity from large MMU threshold that ADMM failed to handle, in the sense that (1) the plan quality from ARC was worse than IMPT (e.g. CI was 0.28 with IMPT and 0.56 with ARC for the lung case), when ADMM was used; (2) in contrast, with SCD, ARC achieved better plan quality than IMPT (e.g. CI was 0.69 with IMPT and 0.80 with ARC for the lung case), which is compatible with more optimization degrees of freedom from ARC compared to IMPT. Significance. To the best of our knowledge, our new MMU optimization method via SCD can effectively handle the nonconvexity from large MMU threshold that none of the current methods can solve. Therefore, we have developed a unique MMU optimization algorithm via SCD that can be used for efficient IMPT, proton ARC, and other particle RT applications where large MMU threshold is desirable (e.g. for the delivery of high dose rates or/and a large number of spots).
Funder
National Cancer Institute
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference27 articles.
1. Planning and optimizing treatment plans for actively scanned proton therapy;Albertini,2009
2. Clinically relevant intensity modulation optimization using physical criteria;Bortfeld,1997
3. Distributed optimization and statistical learning via the alternating direction method of multipliers;Boyd;Found. Trends® Mach. Learn.,2011
4. Convex optimization: algorithms and complexity;Bubeck;Found. Trends® Mach. Learn.,2015
5. Incorporating deliverable monitor unit constraints into spot intensity optimization in intensity-modulated proton therapy treatment planning;Cao;Phys. Med. Biol.,2013
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献