Feasibility study of range verification based on proton-induced acoustic signals and recurrent neural network

Author:

Yao Songhuan,Hu Zongsheng,Zhang Xiaoke,Lou En,Liang Zhiwen,Wang Yuenan,Peng HaoORCID

Abstract

Abstract Range verification in proton therapy is a critical quality assurance task. We studied the feasibility of online range verification based on proton-induced acoustic signals, using a bidirectional long-short-term-memory recurrent neural network and various signal processing techniques. Dose distribution of 1D pencil proton beams inside a CT image-based phantom was analytically calculated. The propagation of acoustic signal inside the phantom was modeled using the k-Wave toolbox. For signal processing, five methods were investigated: down-sampling (DS), DS + HT (Hilbert transform), Wavelet decomposition (Wavedec db1, db4 and db20). The performances were quantitatively evaluated in terms of mean absolute error, mean relative error (MRE) and the Bragg peak localization error ( Δ B P ). In addition, the study analyzed the impact of noise levels, the number of sensors, as well as the location of sensors. For the noiseless case (32 sensors), the Wavedec db1 method demonstrates the best performance: Δ B P   is less than one pixel and the dose accuracy over the region adjacent to the Bragg peak (MRE50) is ∼3.04%. With the presence of noise, the Wavedec db1 method demonstrates the best noise immunity, achieving Δ B P   less than 1 mm and an MRE50 of ∼12%. The proposed machine learning framework may become a useful tool allowing for online range verification in proton therapy.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3