Deep learning-based protoacoustic signal denoising for proton range verification

Author:

Wang JingORCID,Sohn James J,Lei Yang,Nie Wei,Zhou Jun,Avery Stephen,Liu Tian,Yang XiaofengORCID

Abstract

Abstract Proton therapy is a type of radiation therapy that can provide better dose distribution compared to photon therapy by delivering most of the energy at the end of range, which is called the Bragg peak (BP). The protoacoustic technique was developed to determine the BP locations in vivo, but it requires a large dose delivery to the tissue to obtain a high number of signal averaging (NSA) to achieve a sufficient signal-to-noise ratio (SNR), which is not suitable for clinical use. A novel deep learning-based technique has been proposed to denoise acoustic signals and reduce BP range uncertainty with much lower doses. Three accelerometers were placed on the distal surface of a cylindrical polyethylene (PE) phantom to collect protoacoustic signals. In total, 512 raw signals were collected at each device. Device-specific stack autoencoder (SAE) denoising models were trained to denoise the noise-containing input signals, which were generated by averaging only 1, 2, 4, 8, 16, or 24 raw signals (low NSA signals), while the clean signals were obtained by averaging 192 raw signals (high NSA). Both supervised and unsupervised training strategies were employed, and the evaluation of the models was based on mean squared error (MSE), SNR, and BP range uncertainty. Overall, the supervised SAEs outperformed the unsupervised SAEs in BP range verification. For the high accuracy detector, it achieved a BP range uncertainty of 0.20 ± 3.44 mm by averaging over 8 raw signals, while for the other two low accuracy detectors, they achieved the BP uncertainty of 1.44 ± 6.45 mm and −0.23 ± 4.88 mm by averaging 16 raw signals, respectively. This deep learning-based denoising method has shown promising results in enhancing the SNR of protoacoustic measurements and improving the accuracy in BP range verification. It greatly reduces the dose and time for potential clinical applications.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

General Nursing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3