Partitioning uncertainty in projections of Arctic sea ice

Author:

Bonan David BORCID,Lehner FlavioORCID,Holland Marika MORCID

Abstract

Abstract Improved knowledge of the contributing sources of uncertainty in projections of Arctic sea ice over the 21st century is essential for evaluating impacts of a changing Arctic environment. Here, we consider the role of internal variability, model structure and emissions scenario in projections of Arctic sea-ice area (SIA) by using six single model initial-condition large ensembles and a suite of models participating in Phase 5 of the Coupled Model Intercomparison Project. For projections of September Arctic SIA change, internal variability accounts for as much as 40%–60% of the total uncertainty in the next decade, while emissions scenario dominates uncertainty toward the end of the century. Model structure accounts for 60%–70% of the total uncertainty by mid-century and declines to 30% at the end of the 21st century in the summer months. For projections of wintertime Arctic SIA change, internal variability contributes as much as 50%–60% of the total uncertainty in the next decade and impacts total uncertainty at longer lead times when compared to the summertime. In winter, there exists a considerable scenario dependence of model uncertainty with relatively larger model uncertainty under strong forcing compared to weak forcing. At regional scales, the contribution of internal variability can vary widely and strongly depends on the calendar month and region. For wintertime SIA change in the Greenland-Iceland-Norwegian and Barents Seas, internal variability contributes 60%–70% to the total uncertainty over the coming decades and remains important much longer than in other regions. We further find that the relative contribution of internal variability to total uncertainty is state-dependent and increases as sea ice volume declines. These results demonstrate that internal variability is a significant source of uncertainty in projections of Arctic sea ice.

Funder

American Meteorological Society

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Science Foundation

Biological and Environmental Research

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference77 articles.

1. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat;Årthun;J. Clim.,2012

2. The seasonal and regional transition to an ice-free Arctic;Årthun;Geophys. Res. Lett.,2020

3. Mapping the future expansion of Arctic open water;Barnhart;Nat. Clim. Change,2016

4. The effect of changing sea ice on the physical vulnerability of Arctic coasts;Barnhart;Cryosphere,2014

5. Some aspects of uncertainty in predicting sea ice thinning;Bitz;Arctic Sea Ice Decline: Observations Projections Mechanisms Implications Geophys. Monogr,2008

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3