Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up

Author:

Muilwijk MorvenORCID,Hattermann ToreORCID,Martin Torge,Granskog Mats A.ORCID

Abstract

AbstractArctic sea ice mediates atmosphere-ocean momentum transfer, which drives upper ocean circulation. How Arctic Ocean surface stress and velocity respond to sea ice decline and changing winds under global warming is unclear. Here we show that state-of-the-art climate models consistently predict an increase in future (2015–2100) ocean surface stress in response to increased surface wind speed, declining sea ice area, and a weaker ice pack. While wind speeds increase most during fall (+2.2% per decade), surface stress rises most in winter (+5.1% per decade) being amplified by reduced internal ice stress. This is because, as sea ice concentration decreases in a warming climate, less energy is dissipated by the weaker ice pack, resulting in more momentum transfer to the ocean. The increased momentum transfer accelerates Arctic Ocean surface velocity (+31–47% by 2100), leading to elevated ocean kinetic energy and enhanced vertical mixing. The enhanced surface stress also increases the Beaufort Gyre Ekman convergence and freshwater content, impacting Arctic marine ecosystems and the downstream ocean circulation. The impacts of projected changes are profound, but different and simplified model formulations of atmosphere-ice-ocean momentum transfer introduce considerable uncertainty, highlighting the need for improved coupling in climate models.

Funder

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3