Tropical cyclone intensity prediction by inter- and intra-pattern fusion based on multi-source data

Author:

Ma Dongfang,Wang Lingjie,Fang SunkeORCID,Lin Jianmin

Abstract

Abstract Tropical cyclones (TCs) are one of the most destructive natural disasters, which can bring huge life and economic losses to the global coastal areas. Accurate TC intensity prediction is critical for disaster prevention and loss reduction, but the dynamic processes involved in TCs are complicated and not adequately understood, which make the intensity prediction is still a challenging task. In recent years, several deep-learning (DL)-based methods have been developed for TC prediction by mining TC intensity series or related environmental factors. However, information hidden between the two different data sources is generally ignored. Here, a novel DL-based TC intensity prediction network named Pre_3D is proposed, which aimed to mine of inter- and intra-patterns of TC intensity and related external factors independently by separate feature extraction sub-networks. An MLP network is adopted to achieve adaptive fusion of the two patterns for accurate TCs intensity prediction. TC records from several agencies were used to evaluate generalizability of the proposed framework and extensive experiments were conducted validate its effectiveness. The experimental results demonstrate that the models based on the Pre_3D framework achieved considerable performance. ConvGRU-based Pre_3D yields a significant improvement of over 15% in prediction accuracy in 24 h prediction relative to official agencies.

Funder

Fundamental Research Funds for the Central Universities

Key Research and Development Plan of Zhejiang, China

Zhoushan City-Zhejiang University Joint Specific Project

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3