Detectability of COVID-19 global emissions reductions in local CO2 concentration measurements

Author:

Dacre H FORCID,Western L MORCID,Say DORCID,O’Doherty S,Arnold T,Rennick C,Hawkins E

Abstract

Abstract It is estimated that global anthropogenic carbon dioxide (CO2) emissions reduced by up to 12% at the start of 2020 compared to recent years due to the COVID-19 related downturn in economic activity. Despite the large decrease in CO2 emissions, no reduction in the trend in background atmospheric CO2 concentrations has been detected. So, how long would it take for sustained COVID-19 CO2 emission reductions to be detected in daily and monthly averaged local CO2 concentration measurements? CO2 concentration measurements for five measurement sites in the UK and Ireland are combined with meteorological numerical weather prediction data to build statistical models that can predict future CO2 concentrations. It is found that 75 % of the observed daily variability can be explained by these simple models. Emission reduction scenario experiments using these simple models illustrate that large daily and seasonal variability in local CO2 concentrations precludes the rapid emergence of a detectable signal. COVID-19 magnitude emissions reductions would only be detectable in the daily CO2 concentrations after at least 38 months and in monthly CO2 concentrations after 11 months of sustained reductions. For monthly CO2 concentrations the time of emergence is similar for all sites since the seasonal variability is largely driven by non-local fluxes of CO2 between the terrestrial biosphere and the atmosphere. The COVID-19 CO2 anthropogenic emissions reductions are similar in magnitude to those that are required to meet the Paris Agreement target of keeping global temperatures below 2 ° C. This study demonstrates that, using measurements alone, there will be a considerable lag between changes in global anthropogenic emissions and a detected signal in local CO2 concentration trends. Thus, there is likely to be a delay of several years between changes in policy designed to meet CO2 anthropogenic emissions targets and our ability to detect the impact of these policies on CO2 concentrations using atmospheric measurements alone.

Funder

UK National Measurement System

Department for Business, Energy and Industrial Strategy, UK Government

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3