Author:
Bibri Simon Elias,Alexandre Alahi,Sharifi Ayyoob,Krogstie John
Abstract
AbstractThere have recently been intensive efforts aimed at addressing the challenges of environmental degradation and climate change through the applied innovative solutions of AI, IoT, and Big Data. Given the synergistic potential of these advanced technologies, their convergence is being embraced and leveraged by smart cities in an attempt to make progress toward reaching the environmental targets of sustainable development goals under what has been termed “environmentally sustainable smart cities.” This new paradigm of urbanism represents a significant research gap in and of itself. To fill this gap, this study explores the key research trends and driving factors of environmentally sustainable smart cities and maps their thematic evolution. Further, it examines the fragmentation, amalgamation, and transition of their underlying models of urbanism as well as their converging AI, IoT, and Big Data technologies and solutions. It employs and combines bibliometric analysis and evidence synthesis methods. A total of 2,574 documents were collected from the Web of Science database and compartmentalized into three sub-periods: 1991–2015, 2016–2019, and 2020–2021. The results show that environmentally sustainable smart cities are a rapidly growing trend that markedly escalated during the second and third periods—due to the acceleration of the digitalization and decarbonization agendas—thanks to COVID-19 and the rapid advancement of data-driven technologies. The analysis also reveals that, while the overall priority research topics have been dynamic over time—some AI models and techniques and environmental sustainability areas have received more attention than others. The evidence synthesized indicates that the increasing criticism of the fragmentation of smart cities and sustainable cities, the widespread diffusion of the SDGs agenda, and the dominance of advanced ICT have significantly impacted the materialization of environmentally sustainable smart cities, thereby influencing the landscape and dynamics of smart cities. It also suggests that the convergence of AI, IoT, and Big Data technologies provides new approaches to tackling the challenges of environmental sustainability. However, these technologies involve environmental costs and pose ethical risks and regulatory conundrums. The findings can inform scholars and practitioners of the emerging data-driven technology solutions of smart cities, as well as assist policymakers in designing and implementing responsive environmental policies.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献