Can new mobile technologies enable fugitive methane reductions from the oil and gas industry?

Author:

Fox Thomas AORCID,Hugenholtz Chris H,Barchyn Thomas E,Gough Tyler R,Gao Mozhou,Staples Marshall

Abstract

Abstract New mobile platforms such as vehicles, drones, aircraft, and satellites have emerged to help identify and reduce fugitive methane emissions from the oil and gas sector. When deployed as part of leak detection and repair (LDAR) programs, most of these technologies use multi-visit LDAR (MVL), which consists of four steps: (a) rapidly screen all facilities, (b) triage by emission rate, (c) follow-up with close-range methods at the highest-emitting sites, and (d) conduct repairs. The proposed value of MVL is to identify large leaks soon after they arise. Whether MVL offers an improvement over traditional single-visit LDAR (SVL), which relies on undirected close-range surveys, remains poorly understood. We use the Leak Detection and Repair Simulator (LDAR-Sim) to examine the performance and cost-effectiveness of MVL relative to SVL. Results suggest that facility-scale MVL programs can achieve fugitive emission reductions equivalent to SVL, but that improved cost-effectiveness is not guaranteed. Under a best-case scenario, we find that screening must cost < USD 100 per site for MVL to achieve 30% cost reductions relative to SVL. In scenarios with non-target vented emissions and screening quantification uncertainty, triaging errors force excessive close-range follow-up to achieve emissions reduction equivalence. The viability of MVL as a cost-effective alternative to SVL for reducing fugitive methane emissions hinges on accurate triaging after the screening phase.

Funder

Natural Sciences and Engineering Research Council of Canada

Alberta Innovates

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference26 articles.

1. Directive 060 upstream petroleum industry flaring, incinerating, and venting,2018

2. Temporal variability of emissions revealed by continuous, long-term monitoring of an underground natural gas storage facility;Alden;Environ. Sci. Technol.,2020

3. Plume detection modeling of a drone-based natural gas leak detection system;Barchyn;Elementa Sci. Anthropocene,2019

4. Evaluation of next generation emission measurement technologies under repeatable test protocols;Bell;Elementa Sci. Anthropocene,2020

5. Methane leaks from natural gas systems follow extreme distributions;Brandt;Environ. Sci. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3