Abstract
Abstract
New mobile platforms such as vehicles, drones, aircraft, and satellites have emerged to help identify and reduce fugitive methane emissions from the oil and gas sector. When deployed as part of leak detection and repair (LDAR) programs, most of these technologies use multi-visit LDAR (MVL), which consists of four steps: (a) rapidly screen all facilities, (b) triage by emission rate, (c) follow-up with close-range methods at the highest-emitting sites, and (d) conduct repairs. The proposed value of MVL is to identify large leaks soon after they arise. Whether MVL offers an improvement over traditional single-visit LDAR (SVL), which relies on undirected close-range surveys, remains poorly understood. We use the Leak Detection and Repair Simulator (LDAR-Sim) to examine the performance and cost-effectiveness of MVL relative to SVL. Results suggest that facility-scale MVL programs can achieve fugitive emission reductions equivalent to SVL, but that improved cost-effectiveness is not guaranteed. Under a best-case scenario, we find that screening must cost < USD 100 per site for MVL to achieve 30% cost reductions relative to SVL. In scenarios with non-target vented emissions and screening quantification uncertainty, triaging errors force excessive close-range follow-up to achieve emissions reduction equivalence. The viability of MVL as a cost-effective alternative to SVL for reducing fugitive methane emissions hinges on accurate triaging after the screening phase.
Funder
Natural Sciences and Engineering Research Council of Canada
Alberta Innovates
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献