Abstract
Abstract
Livestock grazing is an important component and driver of biodiversity in grassland ecosystems. While numerous studies and a few meta-analyses had been conducted on the response of single taxon diversity to grazing in grasslands, a synthesis of how multi-taxa diversity is affected has been largely missing, especially reflecting its changes along a grazing intensity gradient. We performed a comprehensive meta-analyses of 116 published studies on the species richness (SR) and Shannon−Wiener index (H′) of plants, arthropods, and microbes to examine the response of biodiversity to grazing intensity in temperate grasslands globally. This quantitative assessment showed that the response of SR and H′ to grazing intensity agreed with the intermediate disturbance hypothesis in grasslands; SR and H′ increased with light and moderate grazing intensities, while they decreased at heavy intensity. In addition, plant SR increased markedly with light and moderate grazing and declined with heavy grazing intensity; however, H′ increased at light intensity and declined at moderate and heavy intensities. Moreover, the SR and H′ of microbes were enhanced at light and moderate grazing and were significantly reduced with heavy intensity. The SR and H′ of arthropods monotonously declined with increasing grazing intensity. Importantly, structural equation modeling showed that grazing resulted in enhanced plant SR mainly through its negative effects on plant biomass. Grazing had negative effects on plant coverage and arthropod abundance so that arthropod SR declined with increased grazing intensity. Moreover, increased grazing intensity caused an increase in soil pH, decrease in soil moisture, and then a decrease in microbe SR. Our findings confirm that different taxa exhibit diverse responses to changes in grazing intensity, and the way that grazing intensity affects diversity also varied with different taxa. We strongly recommend considering the requirements of multi-taxa diversity when applying grazing management and including arthropods and microbes in monitoring schemes.
Funder
Beijing Academy of Agriculture and Forestry Sciences (BAAFS) Special Project on Hi-Tech Innovation Capacity
National Natural Science Foundation of China
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献