Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014

Author:

Chen XiaonaORCID,Yang Yaping

Abstract

Abstract Vegetation phenology in spring has received much attention for its importance to terrestrial ecosystem carbon exchange and climate–biosphere interactions studies. Through control on surface water and heat balance, snow cover largely impacts on spring vegetation phenology. However, under the background of global warming and rapid reduction of spring snow cover extent across the Northern Hemisphere (NH), the responses of spring vegetation phenology have not been well documented. Using two satellite-derived land cover dynamic datasets and 420 in situ vegetation phenology observations from five filed datasets, this study evaluated the accuracy of satellite-derived vegetation phenology datasets and explored the changes of start of the growing season (SOS) across the NH snow-covered landmass for the period 2001–2014. Compared with MEaSUREs VIPPHEN, the MODIS SOS maps displayed higher accuracy in capture the real SOS climatology by validating with in situ observations (R 2 = 0.67, bias = −3.99 d). Moreover, evidences from MODIS SOS maps pointed out that the SOS advanced by approximately 2.36 d in NH middle to high latitudes (43.5°N–70.0°N), but delayed by about 0.53 d in lower latitudes (33.0°N–43.5°N) from 2001 to 2014. The contrast SOS anomalies across the NH snow-covered landmass were further proved by changes in spring NDVI derived from GIMMS in the corresponding period. In addition, the observed changes in SOS were consistent with the spatiotemporal pattern of spring snow end date found in previous studies, indicating vegetation phenology changes should be taken into account in estimating the impacts of snow in climate–biosphere interactions studies.

Funder

the National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3