Refined Analysis of Vegetation Phenology Changes and Driving Forces in High Latitude Altitude Regions of the Northern Hemisphere: Insights from High Temporal Resolution MODIS Products

Author:

Yin Hanmin123,Liu Qiang2ORCID,Liao Xiaohan1453,Ye Huping1453ORCID,Li Yue6ORCID,Ma Xiaofei78ORCID

Affiliation:

1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. Peng Cheng Laboratory, Shenzhen 518000, China

3. University of the Chinese Academy of Sciences, Beijing 100049, China

4. Key Laboratory of Low Altitude Geographic Information and Air Route, Civil Aviation Administration of China, Beijing 100101, China

5. The Research Center for UAV Applications and Regulation, Chinese Academy of Sciences, Beijing 100101, China

6. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

7. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

8. Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China

Abstract

The vegetation patterns in high-latitude and high-altitude regions (HLAR) of the Northern Hemisphere are undergoing significant changes due to the combined effects of global warming and human activities, leading to increased uncertainties in vegetation phenological assessment. However, previous studies on vegetation phenological changes often relied on long-term time series of remote sensing products for evaluation and lacked comprehensive analysis of driving factors. In this study, we utilized high temporal resolution seamless MODIS products (MODIS-NDVISDC and MODIS-EVI2SDC) to assess the vegetation phenological changes in High-Latitude-Altitude Regions (HLAR) of the Northern Hemisphere. We quantified the differences in vegetation phenology among different land-use types and determined the main driving factors behind vegetation phenological changes. The results showed that the length of the growing season (LOS) derived from MODIS-NDVISDC was 8.9 days longer than that derived from MODIS-EVI2SDC, with an earlier start of the growing season (SOS) by 1.5 days and a later end of the growing season (EOS) by 7.4 days. Among different vegetation types, deciduous needleleaf forests exhibited the fastest LOS extension (p < 0.01), while croplands showed the fastest LOS reduction (p < 0.05). Regarding land-use transitions, the conversion of built-up land to forest and grassland had the longest LOS. In expanding agricultural areas, the LOS of land converted from built-up land to cropland was significantly higher than that of other land conversions. We analyzed human activities and found that as the human footprint gradient increased, the LOS showed a decreasing trend. Among the climate-related factors, the dominant response of phenology to temperature was the strongest in the vegetation greening period. During the vegetation browning period, the temperature control was weakened, and the control of radiation and precipitation was enhanced, accounting for 20–30% of the area, respectively. Finally, we supplement and prove that the highest contributions to vegetation greening in the Northern Hemisphere occurred during the SOS period (May–June) and the EOS period (October). Our study provides a theoretical basis for vegetation phenological assessment under global change. It also offers new insights for land resource management and planning in high-latitude and high-altitude regions.

Funder

Open Project of Key Laboratory, Xinjiang Uygur Autonomous Region

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3