Spatial Variation in Responses of Plant Spring Phenology to Climate Warming in Grasslands of Inner Mongolia: Drivers and Application

Author:

Lu Guang12,Fang Mengchao12,Zhang Shuping12

Affiliation:

1. Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China

2. College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China

Abstract

Plant spring phenology in grasslands distributed in the Northern Hemisphere is highly responsive to climate warming. The growth of plants is intricately influenced by not only air temperature but also precipitation and soil factors, both of which exhibit spatial variation. Given the critical impact of the plant growth season on the livelihood of husbandry communities in grasslands, it becomes imperative to comprehend regional-scale spatial variation in the response of plant spring phenology to climate warming and the effects of precipitation and soil factors on such variation. This understanding is beneficial for region-specific phenology predictions in husbandry communities. In this study, we analyzed the spatial pattern of the correlation coefficient between the start date of the plant growth season (SOS) and the average winter–spring air temperature (WST) of Inner Mongolia grassland from 2003 to 2019. Subsequently, we analyzed the importance of 13 precipitation and soil factors for the correlation between SOS and average WST using a random forest model and analyzed the interactive effect of the important factors on the SOS using linear mixing models (LMMs). Based on these, we established SOS models using data from pastoral areas within different types of grassland. The percentage of areas with a negative correlation between SOS and average WST in meadow and typical grasslands was higher than that in desert grasslands. Results from the random forest model highlighted the significance of snow cover days (SCD), soil organic carbon (SOC), and soil nitrogen content (SNC) as influential factors affecting the correlation between SOS and average WST. Meadow grasslands exhibited significantly higher levels of SCD, SOC, and SNC compared to typical and desert grasslands. The LMMs indicated that the interaction of grassland type and the average WST and SCD can effectively explain the variation in SOS. The multiple linear models that incorporated both average WST and SCD proved to be better than models utilizing WST or SCD alone in predicting SOS. These findings indicate that the spatial patterns of precipitation and soil factors are closely associated with the spatial variation in the response of SOS to climate warming in Inner Mongolia grassland. Moreover, the average WST and SCD, when considered jointly, can be used to predict plant spring phenology in husbandry communities.

Funder

Key Laboratory of Ecology and Environment in Minority Area, National Ethnic Affairs Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3