Biodiversity constraint indicator establishment and its optimization for urban growth: framework and application

Author:

Sun Chuanzhun,Xu Shan,Qi Wei,Chen ChengORCID,Deng Yu,Pei Nancai,König Hannes J

Abstract

Abstract Urbanization causes tremendous pressure on biodiversity and ecosystems at the global scale. China is among the countries undergoing the fastest urban expansion. For a long time, ecological environment protection has not been a priority in China’s urban planning process. Current urban growth optimization research has some limitations regarding the selection of more scientific ecological constraint indicators and the interaction between urban expansion and ecological factors. This paper at first aimed to establish a reasonable comprehensive biodiversity constraint indicator based on the indicators of net primary productivity, habitat connectivity and habitat quality, and then conducted a case study in Beijing and compared biodiversity loss and urban growth patterns under different developing situations. The integrated valuation of ecosystem services and trade-offs model and GIS-related methods were used to obtain biodiversity and ecological spatial distribution layers. Then an ecological priority-oriented urban growth simulation method was proposed to search for minimum biodiversity loss. The results showed that the important biodiversity security areas were mostly distributed in the western part of the study area and that the ecological degradation in 2000 had a radial pattern and was well in line with the urban construction and ring road distribution patterns. Meanwhile, biodiversity loss with the biodiversity constraint was much less than actual urban growth in 2000–2010. Under the guidance of ecological optimization, urban growth in the research results reflects decentralized and multi-center spatial development characteristics. This type of urban growth not only provides a new model for breaking the inertia of urban sprawl but also proposes ‘biodiversity security’ as an applicable regulatory tool for urban planning and space governance reforming.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3