DeepCropNet: a deep spatial-temporal learning framework for county-level corn yield estimation

Author:

Lin Tao,Zhong Renhai,Wang Yudi,Xu Jinfan,Jiang Hao,Xu Jialu,Ying Yibin,Rodriguez Luis,Ting K C,Li HaifengORCID

Abstract

Abstract Large-scale crop yield estimation is critical for understanding the dynamics of global food security. Understanding and quantifying the temporal cumulative effect of crop growth and spatial variances across different regions remains challenging for large-scale crop yield estimation. In this study, a deep spatial-temporal learning framework, named DeepCropNet (DCN), has been developed to hierarchically capture the features for county-level corn yield estimation. The temporal features are learned by an attention-based long short-term memory network and the spatial features are learned by the multi-task learning (MTL) output layers. The DCN model has been applied to quantify the relationship between meteorological factors and the county-level corn yield in the US Corn Belt from 1981 to 2016. Three meteorological factors, including growing degree days, killing degree days, and precipitation, are used as time-series inputs. The results show that DCN provides an improved estimation accuracy (RMSE = 0.82 Mg ha−1) as compared to that of conventional methods such as LASSO (RMSE = 1.14 Mg ha−1) and Random Forest (RMSE = 1.05 Mg ha−1). Temporally, the attention values computed from the temporal learning module indicate that DCN captures the temporal cumulative effect and this temporal pattern is consistent across all states. Spatially, the spatial learning module improves the estimation accuracy based on the regional specific features captured by the MTL mechanism. The study highlights that the DCN model provides a promising spatial-temporal learning framework for corn yield estimation under changing meteorological conditions across large spatial regions.

Funder

China National Key Research and Development Plan

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3