Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud

Author:

J Reji,Nidamanuri Rama Rao

Abstract

AbstractRemote sensing has been increasingly used in precision agriculture. Buoyed by the developments in the miniaturization of sensors and platforms, contemporary remote sensing offers data at resolutions finer enough to respond to within-farm variations. LiDAR point cloud, offers features amenable to modelling structural parameters of crops. Early prediction of crop growth parameters helps farmers and other stakeholders dynamically manage farming activities. The objective of this work is the development and application of a deep learning framework to predict plant-level crop height and crown area at different growth stages for vegetable crops. LiDAR point clouds were acquired using a terrestrial laser scanner on five dates during the growth cycles of tomato, eggplant and cabbage on the experimental research farms of the University of Agricultural Sciences, Bengaluru, India. We implemented a hybrid deep learning framework combining distinct features of long-term short memory (LSTM) and Gated Recurrent Unit (GRU) for the predictions of plant height and crown area. The predictions are validated with reference ground truth measurements. These predictions were validated against ground truth measurements. The findings demonstrate that plant-level structural parameters can be predicted well ahead of crop growth stages with around 80% accuracy. Notably, the LSTM and the GRU models exhibited limitations in capturing variations in structural parameters. Conversely, the hybrid model offered significantly improved predictions, particularly for crown area, with error rates for height prediction ranging from 5 to 12%, with deviations exhibiting a more balanced distribution between overestimation and underestimation This approach effectively captured the inherent temporal growth pattern of the crops, highlighting the potential of deep learning for precision agriculture applications. However, the prediction quality is relatively low at the advanced growth stage, closer to the harvest. In contrast, the prediction quality is stable across the three different crops. The results indicate the presence of a robust relationship between the features of the LiDAR point cloud and the auto-feature map of the deep learning methods adapted for plant-level crop structural characterization. This approach effectively captured the inherent temporal growth pattern of the crops, highlighting the potential of deep learning for precision agriculture applications.

Funder

Department of Biotechnology (DBT), Government of India

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3