Smartphone-based remote assessment of upper extremity function for multiple sclerosis using the Draw a Shape Test

Author:

Creagh A PORCID,Simillion CORCID,Scotland AORCID,Lipsmeier FORCID,Bernasconi CORCID,Belachew SORCID,van Beek JORCID,Baker MORCID,Gossens CORCID,Lindemann MORCID,De Vos MORCID

Abstract

Abstract Objective: Smartphone devices may enable out-of-clinic assessments in chronic neurological diseases. We describe the Draw a Shape (DaS) Test, a smartphone-based and remotely administered test of Upper Extremity (UE) function developed for people with multiple sclerosis (PwMS). This work introduces DaS-related features that characterise UE function and impairment, and aims to demonstrate how multivariate modelling of these metrics can reliably predict the 9-Hole Peg Test (9HPT), a clinician-administered UE assessment in PwMS. Approach: The DaS Test instructed PwMS and healthy controls (HC) to trace predefined shapes on a smartphone screen. A total of 93 subjects (HC, n = 22; PwMS, n = 71) contributed both dominant and non-dominant handed DaS tests. PwMS subjects were characterised as those with normal (nPwMS, n = 50) and abnormal UE function (aPwMS, n = 21) with respect to their average 9HPT time (≤ or > 22.7 (s), respectively). L 1-regularization techniques, combined with linear least squares (OLS, IRLS), or non-linear support vector (SVR) or random forest (RFR) regression were investigated as functions to map relevant DaS features to 9HPT times. Main results: It was observed that average non-dominant handed 9HPT times were more accurately predicted by DaS features (r 2 = 0.41, P < 0.05; MAE: 2.08 ± 0.34 (s)) than average dominant handed 9HPTs (r 2 = 0.39, P < 0.05; MAE: 2.32 ± 0.43 (s)), using simple linear IRLS ( P < 0.01). Moreover, it was found that the Mean absolute error (MAE) in predicted 9HPTs was comparable to the variability of actual 9HPT times within HC, nPwMS and aPwMS groups respectively. The 9HPT however exhibited large heteroscedasticity resulting in less stable predictions of longer 9HPT times. Significance: This study demonstrates the potential of the smartphone-based DaS Test to reliably predict 9HPT times and remotely monitor UE function in PwMS.

Funder

F. Hoffmann-La Roche

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3