Wearable Sensor Technologies to Assess Motor Functions in People With Multiple Sclerosis: Systematic Scoping Review and Perspective

Author:

Woelfle TimORCID,Bourguignon LucieORCID,Lorscheider JohannesORCID,Kappos LudwigORCID,Naegelin YvonneORCID,Jutzeler Catherine RuthORCID

Abstract

Background Wearable sensor technologies have the potential to improve monitoring in people with multiple sclerosis (MS) and inform timely disease management decisions. Evidence of the utility of wearable sensor technologies in people with MS is accumulating but is generally limited to specific subgroups of patients, clinical or laboratory settings, and functional domains. Objective This review aims to provide a comprehensive overview of all studies that have used wearable sensors to assess, monitor, and quantify motor function in people with MS during daily activities or in a controlled laboratory setting and to shed light on the technological advances over the past decades. Methods We systematically reviewed studies on wearable sensors to assess the motor performance of people with MS. We scanned PubMed, Scopus, Embase, and Web of Science databases until December 31, 2022, considering search terms “multiple sclerosis” and those associated with wearable technologies and included all studies assessing motor functions. The types of results from relevant studies were systematically mapped into 9 predefined categories (association with clinical scores or other measures; test-retest reliability; group differences, 3 types; responsiveness to change or intervention; and acceptability to study participants), and the reporting quality was determined through 9 questions. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. Results Of the 1251 identified publications, 308 were included: 176 (57.1%) in a real-world context, 107 (34.7%) in a laboratory context, and 25 (8.1%) in a mixed context. Most publications studied physical activity (196/308, 63.6%), followed by gait (81/308, 26.3%), dexterity or tremor (38/308, 12.3%), and balance (34/308, 11%). In the laboratory setting, outcome measures included (in addition to clinical severity scores) 2- and 6-minute walking tests, timed 25-foot walking test, timed up and go, stair climbing, balance tests, and finger-to-nose test, among others. The most popular anatomical landmarks for wearable placement were the waist, wrist, and lower back. Triaxial accelerometers were most commonly used (229/308, 74.4%). A surge in the number of sensors embedded in smartphones and smartwatches has been observed. Overall, the reporting quality was good. Conclusions Continuous monitoring with wearable sensors could optimize the management of people with MS, but some hurdles still exist to full clinical adoption of digital monitoring. Despite a possible publication bias and vast heterogeneity in the outcomes reported, our review provides an overview of the current literature on wearable sensor technologies used for people with MS and highlights shortcomings, such as the lack of harmonization, transparency in reporting methods and results, and limited data availability for the research community. These limitations need to be addressed for the growing implementation of wearable sensor technologies in clinical routine and clinical trials, which is of utmost importance for further progress in clinical research and daily management of people with MS. Trial Registration PROSPERO CRD42021243249; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=243249

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3