Upper limb intention tremor assessment: opportunities and challenges in wearable technology

Author:

Paredes-Acuna NataliaORCID,Utpadel-Fischler DanielORCID,Ding KeqinORCID,Thakor Nitish V.ORCID,Cheng GordonORCID

Abstract

Abstract Background Tremors are involuntary rhythmic movements commonly present in neurological diseases such as Parkinson's disease, essential tremor, and multiple sclerosis. Intention tremor is a subtype associated with lesions in the cerebellum and its connected pathways, and it is a common symptom in diseases associated with cerebellar pathology. While clinicians traditionally use tests to identify tremor type and severity, recent advancements in wearable technology have provided quantifiable ways to measure movement and tremor using motion capture systems, app-based tasks and tools, and physiology-based measurements. However, quantifying intention tremor remains challenging due to its changing nature. Methodology & Results This review examines the current state of upper limb tremor assessment technology and discusses potential directions to further develop new and existing algorithms and sensors to better quantify tremor, specifically intention tremor. A comprehensive search using PubMed and Scopus was performed using keywords related to technologies for tremor assessment. Afterward, screened results were filtered for relevance and eligibility and further classified into technology type. A total of 243 publications were selected for this review and classified according to their type: body function level: movement-based, activity level: task and tool-based, and physiology-based. Furthermore, each publication's methods, purpose, and technology are summarized in the appendix table. Conclusions Our survey suggests a need for more targeted tasks to evaluate intention tremors, including digitized tasks related to intentional movements, neurological and physiological measurements targeting the cerebellum and its pathways, and signal processing techniques that differentiate voluntary from involuntary movement in motion capture systems.

Funder

Institute for Advanced Studies (IAS), Technical University of Munich

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Updates in essential tremor;Parkinsonism & Related Disorders;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3