Room temperature ppt-level NO2 gas sensor based on SnO x /SnS nanostructures with rich oxygen vacancies

Author:

Tang HongyuORCID,Gao ChenshanORCID,Yang Huiru,Sacco LeandroORCID,Sokolovskij RobertORCID,Zheng Hongze,Ye HuaiyuORCID,Vollebregt StenORCID,Yu Hongyu,Fan Xuejun,Zhang Guoqi

Abstract

Abstract In this paper, tin oxidation (SnO x )/tin-sulfide (SnS) heterostructures are synthesized by the post-oxidation of liquid-phase exfoliated SnS nanosheets in air. We comparatively analyzed the NO2 gas response of samples with different oxidation levels to study the gas sensing mechanisms. The results show that the samples oxidized at 325 °C are the most sensitive to NO2 gas molecules, followed by the samples oxidated at 350 °C, 400 °C and 450 °C. The repeatabilities of 350 °C samples are better than that of 325 °C, and there is almost no shift in the baseline. Thus this work systematically analyzed the gas sensing performance of SnO x /SnS-based sensor oxidized at 350 °C. It exhibits a high response of 171% towards 1 ppb NO2, a wide detecting range (from 1 ppb to 1 ppm), and an ultra-low theoretical detection limit of 5 ppt, and excellent repeatability at room temperature. The sensor also shows superior gas selectivity to NO2 in comparison to several other gas molecules, such as NO, H2, SO2, CO, NH3, and H2O. After x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscope, and electron paramagnetic resonance characterizations combining first principle analysis, it is found that the outstanding NO2 sensing behavior may be attributed to three factors: the Schottky contact between electrodes and SnO x /SnS; active charge transfer in the surface and the interface layer of SnO x /SnS heterostructures; and numerous oxygen vacancies generated during the post-oxidation process, which provides more adsorption sites and superior bandgap modulation. Such a heterostructure-based room-temperature sensor can be fabricated in miniaturized size with low cost, making it possible for large-scale applications.

Funder

Key-Area Research and Development Program of GuangDong Province

National Key R&D Program of China

Shenzhen Fundamental Research Program

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Reference65 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3