Affiliation:
1. Department of Electronic Materials Engineering, Australian Research Council Centre of Excellence for Transformative Meta‐Optical Systems, Research School of Physics The Australian National University Canberra ACT 2600 Australia
2. Nanotechnology Research Laboratory, Research School of Chemistry, College of Science The Australian National University Canberra ACT 2600 Australia
3. Nanotechnology Research Laboratory, Faculty of Engineering The University of Sydney Camperdown NSW 2006 Australia
Abstract
Air quality is deteriorating due to continuing urbanization and industrialization. In particular, nitrogen dioxide (NO2) is a biologically and environmentally hazardous byproduct from fuel combustion that is ubiquitous in urban life. To address this issue, we report a high‐performance flexible indium phosphide nanomembrane NO2 sensor for real‐time air quality monitoring. An ultralow limit of detection of ~200 ppt and a fast response have been achieved with this device by optimizing the film thickness and doping concentration during indium phosphide epitaxy. By varying the film thickness, a dynamic range of values for NO2 detection from parts per trillion (ppt) to parts per million (ppm) level have also been demonstrated under low bias voltage and at room temperature without additional light activation. Flexibility measurements show an adequately stable response after repeated bending. On‐site testing of the sensor in a residential kitchen shows that NO2 concentration from the gas stove emission could exceed the NO2 Time Weighted Average limit, i.e., 200 ppb, highlighting the significance of real‐time monitoring. Critically, the indium phosphide nanomembrane sensor element cost is estimated at <0.1 US$ due to the miniatured size, nanoscale thickness, and ease of fabrication. With these superior performance characteristics, low cost, and real‐world applicability, our indium phosphide nanomembrane sensors offer a promising solution for a variety of air quality monitoring applications.
Funder
Australian Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献