Directional etching for high aspect ratio nano-trenches on hexagonal boron nitride by catalytic metal particles

Author:

Chen Chen,He Li,Jiang Chengxin,Chen Lingxiu,Wang Hui Shan,Wang Xiujun,Kong Ziqiang,Mu XiaojingORCID,Wei Zhipeng,Watanabe KenjiORCID,Taniguchi Takashi,Wu TianruORCID,Zhang Daoli,Wang HaominORCID

Abstract

Abstract Stimulated by the attractive performance of multi-dimensional heterostructures involving hexagonal boron nitride (hBN), intense attentions have been paid to creation of sharp boundary/interface, which could bring hBN nano-structures additional appealing physical properties. However, the lack of controllable synthesis limits further experimental investigation on hBN nano-structures. Here, the directional etching of transitional metal nano-particles (NPs) on the surface of hBN to produce nano-trenches with sharp edges was systematic investigated. It is found that, only Pt and Ir NPs can produce armchair-oriented nano-trenches at low H2 partial pressure, while other transitional metals lead to zigzag oriented nano-trenches. The density and width of the nano-trenches always increase with etching temperature and the pre-treated solution concentration while the trench orientation depends on both H2 partial pressure and etching temperature. The aspect ratio of nano-trenches may reach several thousand under optimized conditions. The method exhibited here shines a light on edge-selective patterning of 2D crystals.

Funder

China Postdoctoral Science Foundation

Soft Matter Nanofab of ShanghaiTech Univerisy

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3