Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation

Author:

Lee Joo Song12ORCID,Choi Soo Ho3ORCID,Yun Seok Joon4ORCID,Kim Yong In5,Boandoh Stephen6ORCID,Park Ji-Hoon45ORCID,Shin Bong Gyu478ORCID,Ko Hayoung15ORCID,Lee Seung Hee2,Kim Young-Min45ORCID,Lee Young Hee45ORCID,Kim Ki Kang6ORCID,Kim Soo Min1ORCID

Affiliation:

1. Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-Gun, 55324, Republic of Korea.

2. Applied Materials Institute for BIN Convergence, Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896, Republic of Korea.

3. Department of Physics, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

4. Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 16419, Republic of Korea.

5. Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

6. Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

7. Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Ewha Womans University, Seoul, 03760, Republic of Korea.

8. Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

Abstract

Wafer-scale hBN crystalline films Although wafer-scale polycrystalline films of insulating hexagonal boron nitride (hBN) can be grown, the grain boundaries can cause both scattering or pinning of charge carriers in adjacent conducting layers that impair device performance. Lee et al. grew wafer-scale single-crystal films of hBN by feeding the precursors into molten gold films on tungsten substrates. The low solubility of boron and nitrogen in gold caused micrometer-scale grains of hBN to form that coalesced into single crystals. These films in turn supported the growth of epitaxial wafer-scale films of graphene and tungsten disulfide. Science , this issue p. 817

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3