Influence of discrete laser surface melting on scuffing resistance of W6Mo5Cr4V2 steel gear

Author:

Lv YouORCID,Cui Bo,Sun Zhaolong,Xiao Xinlei

Abstract

Abstract The gear transmission system is advancing towards high-speed and heavy-duty applications. Among the main failure modes of the system, tooth surface scuffing due to increased tooth surface temperature has emerged as a prominent concern in mechanical transmission. Addressing the enhancement of gear scuffing resistance has thus become an urgent challenge in this field. This paper utilized discrete laser surface melting (DLSM) treatment to create discrete laser surface melted (DLSMed) units on the surface of W6Mo5Cr4V2 steel gears, resembling the radial ribs found on the surface of Limaria basilica. The paper investigated the size, hardness, residual austenite content, and residual stress of the DLSMed units at varying current intensities and laser frequencies. Microstructural observations were conducted on the DLSMed units, followed by gear scuffing experiments performed on the Forschungsstelle für Zahnräder und Getriebebau (FZG) testing machine. The experimental findings revealed that the change in laser frequency had a clearly weaker impact on the size of the DLSMed unit compared to current intensity. The DLSMed unit consisted of two parts: the melting zone (MZ) and the heat-affected zone (HAZ), with equiaxed and dendritic microstructures, respectively. Both zones exhibited refinement with increasing current intensity and laser frequency. Moreover, the microhardness of the DLSMed unit showed significant improvement compared to that of as-received gears. The scuffing resistance of DLSMed gears was found to be closely linked to their initial surface roughness. Residual stress formation in DLSMed gears was attributed to thermal stress and microstructural stress. The distribution pattern of DLSMed units had varying effects on the scuffing load-carrying capacity of DLSMed gears. Specifically, DLSMed gears with transverse distribution of DLSMed units demonstrated a 12.5% improvement in anti-scuffing performance compared to those with longitudinal distribution. Finally, this paper elucidated the mechanism through which DLSM enhances the scuffing resistance of W6Mo5Cr4V2 steel gears.

Funder

Natural Science Foundation of Jilin Province

Publisher

IOP Publishing

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3