Optimizing the design of straight bevel gear with reduced scoring effect

Author:

Rai Paridhi,Barman Asim Gopal

Abstract

Purpose The purpose of this paper is to minimize the volume of straight bevel gear and to develop resistance towards scoring failure in the straight bevel gear. Two evolutionary and more advance optimization techniques were used for performing optimization of straight bevel gears, which will also save computational time and will be less computationally expensive compared to a previously used optimization for design optimization of straight bevel gear. Design/methodology/approach The following two different cases are considered for the study: the first mathematical model similar to that used earlier and without any modification to show efficiency of the optimization algorithm for straight bevel gear design optimization and the second mathematical model consist of constraints on scoring and contact ratio along with other generally used design constraints. Real coded genetic algorithm (RCGA) and accelerated particle swarm optimization (APSO) are used to optimize the straight bevel gear design. The effectiveness of the algorithms used has been validated by comparing the obtained results with previously published results. Findings It has been found that APSO and RCGA outperform other algorithms for straight bevel gear design. Optimized design values have reduced the scoring effect significantly. The values of the contact ratio obtained further enhances the meshing operation of the bevel gear drive by making it smoother and quieter. Originality/value Low volume is one of the essential requirements of gearing applications. Scoring is a critical gear failure aspect that leads to the broken tooth in both high speed and low-speed applications of gears. The occurrence of scoring is hard to detect early and analyse. Scoring failure and contact ratio have been introduced as design constraints in the mathematical model. So, the mathematical model demonstrated in this paper minimizes the volume of the straight bevel gear drive, which has been very less attempted in previous studies, with scoring and contact ratio as some of the important design constraints, which the objective function has been subjected to. Also, two advanced and evolutionary optimization algorithms have been used to implement the mathematical model to reduce the computational time required to attain the optimal solution.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference37 articles.

1. Simulated binary crossover for continuous search space;Complex Systems,1995

2. Multiobjective optimisation of bevel gear pair design using NSGA-II;Materials Today: Proceedings,2019

3. Analysing mutation schemes for real-parameter genetic algorithms;International Journal of Artificial Intelligence and Soft Computing,2014

4. Advanced design optimization on straight bevel gears pair based on nature-inspired algorithms;SN Applied Sciences,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3