Author:
Xu Ren-Ren,Zhang Qing-Zhu,Zhou Long-Da,Yang Hong,Gai Tian-Yang,Yin Hua-Xiang,Wang Wen-Wu
Abstract
A comprehensive study of the negative and positive bias temperature instability (NBTI/PBTI) of 3D FinFET devices with different small channel lengths is presented. It is found while with the channel lengths shrinking from 100 nm to 30 nm, both the NBTI characteristics of p-FinFET and PBTI characteristics of n-FinFET turn better. Moreover, the channel length dependence on NBTI is more serious than that on PBTI. Through the analysis of the physical mechanism of BTI and the simulation of 3-D stress in the FinFET device, a physical mechanism of the channel length dependence on NBTI/PBTI is proposed. Both extra fluorine passivation in the corner of bulk oxide and stronger channel stress in p-FinFETs with shorter channel length causes less NBTI issue, while the extra nitrogen passivation in the corner of bulk oxide induces less PBTI degradation as the channel length decreasing for n-FinFETs. The mechanism well matches the experimental result and provides one helpful guide for the improvement of reliability issues in the advanced FinFET process.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献