Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process

Author:

Gong 巩 Wei-Tai 伟泰,Li 李 Yan 闫,Sun 孙 Ya-Bin 亚宾,Shi 石 Yan-Ling 艳玲,Li 李 Xiao-Jin 小进

Abstract

Degradation induced by the negative bias temperature instability (NBTI) can be attributed to three mutually uncoupled physical mechanisms, i.e., the generation of interface traps (ΔV IT), hole trapping in pre-existing gate oxide defects (ΔV HT), and the generation of gate oxide defects (ΔV OT). In this work, the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate (HKMG) process is thoroughly studied. The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature. The effects of the three underlying subcomponents are evaluated by using the comprehensive models. It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress. Moreover, the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted. The dependence of operating lifetime on stress bias and temperature is also discussed. It is observed that NBTI lifetime significantly decreases as the stress increases. Furthermore, the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3