SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability

Author:

Zhang 张 Jin-Ping 金平,Chen 陈 Wei 伟,Chen 陈 Zi-Xun 子珣,Zhang 张 Bo 波

Abstract

A novel silicon carbide (SiC) trench metal–oxide–semiconductor field-effect transistor (MOSFET) with a dual shield gate (DSG) and optimized junction field-effect transistor (JFET) layer (ODSG-TMOS) is proposed. The combination of the DSG and optimized JFET layer not only significantly improves the device’s dynamic performance but also greatly enhances the safe operating area (SOA). Numerical analysis is carried out with Silvaco TCAD to study the performance of the proposed structure. Simulation results show that comparing with the conventional asymmetric trench MOSFET (Con-ATMOS), the specific on-resistance (R on,sp) is significantly reduced at almost the same avalanche breakdown voltage (BV av). Moreover, the DSG structure brings about much smaller reverse transfer capacitance (C rss) and input capacitance (C iss), which helps to reduce the gate–drain charge (Q gd) and gate charge (Q g). Therefore, the high frequency figure of merit (HFFOM) of R on,spQ gd and R on,spQ g for the proposed ODSG-TMOS are improved by 83.5% and 76.4%, respectively. The switching power loss of the proposed ODSG-TMOS is 77.0% lower than that of the Con-ATMOS. In addition, the SOA of the proposed device is also enhanced. The saturation drain current (I d,sat) at a gate voltage (V gs) of 15 V for the ODSG-TMOS is reduced by 17.2% owing to the JFET effect provided by the lower shield gate (SG) at a large drain voltage. With the reduced I d,sat, the short-circuit withstand time is improved by 87.5% compared with the Con-ATMOS. The large-current turn-off capability is also improved, which is important for the widely used inductive load applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3