Author:
Grari Meryem,Zoheir CifAllah,Yousfi Yasser,Benbrik Abdelhak
Abstract
The fluid model, also called the macroscopic model, is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges. By varying the parameters of the model, numerical simulation allows us to study several cases, providing us the physico-chemical information that is often difficult to obtain experimentally. In this work, using the fluid model, we employ numerical simulation to show the effect of pressure and space between the reactor electrodes on the fundamental properties of silicon plasma diluted with ammonia and hydrogen. The results show the evolution of the fundamental characteristics of the plasma discharge as a function of the variation of the pressure and the distance between the electrodes. By examining the pressure-distance product in a range between 0.3 Torr 2.7 cm and 0.7 Torr 4 cm, we have determined the optimal pressure-distance product that allows better deposition of hydrogenated silicon nitride (SiN
x
H
y
) films which is 0.7 Torr 2.7 cm.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献