Roadmap on Machine learning in electronic structure

Author:

Kulik H JORCID,Hammerschmidt TORCID,Schmidt J,Botti SORCID,Marques M A LORCID,Boley M,Scheffler M,Todorović MORCID,Rinke PORCID,Oses CORCID,Smolyanyuk AORCID,Curtarolo SORCID,Tkatchenko A,Bartók A PORCID,Manzhos SORCID,Ihara M,Carrington TORCID,Behler JORCID,Isayev OORCID,Veit MORCID,Grisafi AORCID,Nigam JORCID,Ceriotti MORCID,Schütt K TORCID,Westermayr JORCID,Gastegger M,Maurer R JORCID,Kalita B,Burke KORCID,Nagai R,Akashi R,Sugino O,Hermann J,Noé FORCID,Pilati SORCID,Draxl CORCID,Kuban M,Rigamonti S,Scheidgen M,Esters MORCID,Hicks DORCID,Toher CORCID,Balachandran P VORCID,Tamblyn IORCID,Whitelam S,Bellinger C,Ghiringhelli L MORCID

Abstract

AbstractIn recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other branches of science. With this in mind, this Roadmap article, consisting of multiple contributions from experts across the field, discusses the use of machine learning in materials science, and share perspectives on current and future challenges in problems as diverse as the prediction of materials properties, the construction of force-fields, the development of exchange correlation functionals for density-functional theory, the solution of the many-body problem, and more. In spite of the already numerous and exciting success stories, we are just at the beginning of a long path that will reshape materials science for the many challenges of the XXIth century.

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3