Inverse mapping of quantum properties to structures for chemical space of small organic molecules

Author:

Fallani AlessioORCID,Medrano Sandonas LeonardoORCID,Tkatchenko AlexandreORCID

Abstract

AbstractComputer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.

Funder

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3