i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations

Author:

Litman Yair1ORCID,Kapil Venkat123ORCID,Feldman Yotam M. Y.4ORCID,Tisi Davide5ORCID,Begušić Tomislav6ORCID,Fidanyan Karen7ORCID,Fraux Guillaume5ORCID,Higer Jacob8ORCID,Kellner Matthias5ORCID,Li Tao E.9ORCID,Pós Eszter S.7,Stocco Elia7ORCID,Trenins George7ORCID,Hirshberg Barak4ORCID,Rossi Mariana7ORCID,Ceriotti Michele5ORCID

Affiliation:

1. Y. Hamied Department of Chemistry, University of Cambridge 1 , Lensfield Road, Cambridge CB2 1EW, United Kingdom

2. Department of Physics and Astronomy, University College London 2 , 17-19 Gordon St, London WC1H 0AH, United Kingdom

3. Thomas Young Centre and London Centre for Nanotechnology 3 , 19 Gordon St, London WC1H 0AH, United Kingdom

4. School of Chemistry, Tel Aviv University 4 , Tel Aviv 6997801, Israel

5. Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne 5 , 1015 Lausanne, Switzerland

6. Div. of Chemistry and Chemical Engineering, California Institute of Technology 6 , Pasadena, California 91125, USA

7. MPI for the Structure and Dynamics of Matter 7 , Hamburg, Germany

8. School of Physics, Tel Aviv University 8 , Tel Aviv 6997801, Israel

9. Department of Physics and Astronomy, University of Delaware 9 , Newark, Delaware 19716, USA

Abstract

Atomic-scale simulations have progressed tremendously over the past decade, largely thanks to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler–Parinello, DeePMD, and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows for deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.

Funder

Deutsche Forschungsgemeinschaft

Swiss National Computer Center

Engineering and Physical Sciences Research Council

Swiss National Science Foundation

USA-Israel Binational Science Foundation

Israel Science Foundation

Max Planck Computing and Data Facility

IMPRS- UFAST

Lise-Meitner Excellence Program

MARVEL National Center of Competence in Research

Horizon 2020 Framework Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3