Abstract
Abstract
The electron dynamics and the mechanisms of power absorption in radio-frequency (RF) driven, magnetically enhanced capacitively coupled plasmas at low pressure are investigated. The device in focus is a geometrically asymmetric cylindrical magnetron with a radially nonuniform magnetic field in axial direction and an electric field in radial direction. The dynamics is studied analytically using the cold plasma model and a single-particle formalism, and numerically with the inhouse energy and charge conserving particle-in-cell/Monte Carlo collisions code ECCOPIC1S-M. It is found that the dynamics differs significantly from that of an unmagnetized reference discharge. In the magnetized region in front of the powered electrode, an enhanced electric field arises during sheath expansion and a reversed electric field during sheath collapse. Both fields are needed to ensure discharge sustaining electron transport against the confining effect of the magnetic field. The corresponding azimuthal
E
×
B
-drift can accelerate electrons into the inelastic energy range which gives rise to a new mechanism of RF power dissipation. It is related to the Hall current and is different in nature from Ohmic heating, as which it has been classified in previous literature. The new heating is expected to be dominant in many magnetized capacitively coupled discharges. It is proposed to term it the ‘µ-mode’ to separate it from other heating modes.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献