Magnetic enhancement of the electrical asymmetry effect in capacitively coupled plasmas

Author:

Doyle Scott JORCID,Boswell Rod W,Charles Christine,Dedrick James PORCID

Abstract

Abstract The development of real-time control strategies for key discharge parameters, such as densities, fluxes, and energy distributions, is of fundamental interest to many plasma sources. Over the last decade, multi-harmonic ‘tailored’ voltage waveforms have been successfully employed to achieve enhanced control of key parameters in a wide range of radio-frequency (RF) plasma sources through application of the electrical asymmetry effect (EAE). More recently, the analogous magnetic asymmetry effect (MAE) has been numerically and experimentally demonstrated to achieve a notable degree of control in parallel plate RF plasma sources. The MAE is achieved via selectively magnetising the charged species adjacent to one electrode, altering the charge flux to the surface and enforcing a DC self-bias to maintain quasineutrality. This study addresses the degree of control achieved by the MAE in a non-planar geometry via 2D fluid/kinetic simulations of a magnetised RF capacitively coupled plasma source employing two different magnetic topologies. The simultaneous application of the EAE and MAE is then presented for the same geometry, demonstrating a degree of non-linear behaviour dependant upon the applied magnetic topology. Control of the DC self-bias voltage η dc is demonstrated for a single 600 V pp , 13.56 MHz discharge in both ‘convergent’ (maximum on-axis field strength) and ‘divergent’ (minimum on-axis field strength) magnetic topolgies. MAE induced modulations of η dc = 0.13 V pp and η dc = 0.03 V pp are achieved for each magnetic topology, respectively, for magnetic field strengths between 50 and 1000 G. Simultaneous application of an EAE and MAE is achieved through a multi-harmonic ‘peak’-type tailored voltage waveform employing varying harmonic phase offsets between 0 θ 360 . The degree to which the DC self-bias voltage is modulated by the applied EAE is mediated by the orientation and magnitude of the applied magnetic field. The EAE induced DC self-bias modulations exhibit non-linear behaviour in response to a superimposed MAE, such that the resulting DC self-bias differs from an additive combination of the two effects alone Simultaneous application of the electrical and MAEs offers the possibility of further decoupling ion and electron dynamics in RF plasma sources, and represents an improvement over each approach in isolation.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3