Numerical optimization of dielectric properties to achieve process uniformity in capacitively coupled plasma reactors

Author:

Kim Ho JunORCID,Lee Kyungjun,Park Hwanyeol

Abstract

Abstract This paper presents the results of our numerical analysis to optimize the dielectric properties to achieve process uniformity in the thin film deposition process using capacitively coupled plasma. The difference in the plasma density distribution was analyzed by changing the wafer material from silicon to quartz (or Teflon). Similarly, aluminum was compared with aluminum nitride as the electrode material, and the sidewall material was varied from quartz to a perfect dielectric to study the effect on the plasma characteristics. A two-dimensional self-consistent fluid model was used to analyze the spatial distribution of the plasma parameters. In terms of the process conditions, the gas pressure was set to 400 Pa, the input power was fixed to 100 W, and a radio frequency of 13.56 MHz was used. SiH4/Ar was used as the gas mixture, and these conditions were used as input for numerical simulations of the deposition state of the hydrogenated amorphous silicon layer. The radial spatial distribution of plasma parameters was confirmed to be modified by dielectric elements with low dielectric constants regardless of the type of element. Despite the thin wafer thickness, the use of a wafer with low permittivity weakens the electric field near the electrode edge due to the stronger surface charging effect. Additionally, by changing the material of the sidewall to a perfect dielectric, a more uniform distribution of plasma could be obtained. This is achieved as the peak values of the plasma parameters are located away from the wafer edge. Interestingly, the case in which half of the sidewall was specified as comprising a perfect dielectric and the other half quartz had a more uniform distribution than the case in which the sidewalls consisted entirely of a perfect dielectric.

Funder

National Research Council of Science & Technology

Hanyang University

Korea government

Soonchunhyang University

Ministry of Trade, Industry & Energy

Ministry of Education

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Reference37 articles.

1. Foundations of atomic-level plasma processing in nanoelectronics;Arts;Plasma Sources Sci. Technol.,2022

2. Radical-controlled plasma processes;Hori;Rev. Mod. Plasma Phys.,2022

3. Foundations of plasma enhanced chemical vapor deposition of functional coating;Snyders;Plasma Sources Sci. Technol.,2023

4. Status and prospects of plasma-assisted atomic layer deposition;Knoops;J. Vac. Sci. Technol. A,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3