Abstract
Abstract
Since decades, the PECVD (‘plasma enhanced chemical vapor deposition’) processes have emerged as one of the most convenient and versatile approaches to synthesize either organic or inorganic thin films on many types of substrates, including complex shapes. As a consequence, PECVD is today utilized in many fields of application ranging from microelectronic circuit fabrication to optics/photonics, biotechnology, energy, smart textiles, and many others. Nevertheless, owing to the complexity of the process including numerous gas phase and surface reactions, the fabrication of tailor-made materials for a given application is still a major challenge in the field making it obvious that mastery of the technique can only be achieved through the fundamental understanding of the chemical and physical phenomena involved in the film formation. In this context, the aim of this foundation paper is to share with the readers our perception and understanding of the basic principles behind the formation of PECVD layers considering the co-existence of different reaction pathways that can be tailored by controlling the energy dissipated in the gas phase and/or at the growing surface. We demonstrate that the key parameters controlling the functional properties of the PECVD films are similar whether they are inorganic- or organic-like (plasma polymers) in nature, thus supporting a unified description of the PECVD process. Several concrete examples of the gas phase processes and the film behavior illustrate our vision. To complete the document, we also discuss the present and future trends in the development of the PECVD processes and provide examples of important industrial applications using this powerful and versatile technology.
Reference289 articles.
1. Foundations of physical vapor deposition with plasma assistance;Gudmundsson;Plasma Sources Sci. Technol.,2022
2. Foundations of plasma surface functionalization of polymers for industrial and biological applications;Booth;Plasma Sources Sci. Technol.,2022
3. Carbon for electric lights;Sawyer,1880
4. Process of depositing nickel;Mond
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献