Foundations of plasma enhanced chemical vapor deposition of functional coatings

Author:

Snyders RORCID,Hegemann DORCID,Thiry D,Zabeida OORCID,Klemberg-Sapieha JORCID,Martinu LORCID

Abstract

Abstract Since decades, the PECVD (‘plasma enhanced chemical vapor deposition’) processes have emerged as one of the most convenient and versatile approaches to synthesize either organic or inorganic thin films on many types of substrates, including complex shapes. As a consequence, PECVD is today utilized in many fields of application ranging from microelectronic circuit fabrication to optics/photonics, biotechnology, energy, smart textiles, and many others. Nevertheless, owing to the complexity of the process including numerous gas phase and surface reactions, the fabrication of tailor-made materials for a given application is still a major challenge in the field making it obvious that mastery of the technique can only be achieved through the fundamental understanding of the chemical and physical phenomena involved in the film formation. In this context, the aim of this foundation paper is to share with the readers our perception and understanding of the basic principles behind the formation of PECVD layers considering the co-existence of different reaction pathways that can be tailored by controlling the energy dissipated in the gas phase and/or at the growing surface. We demonstrate that the key parameters controlling the functional properties of the PECVD films are similar whether they are inorganic- or organic-like (plasma polymers) in nature, thus supporting a unified description of the PECVD process. Several concrete examples of the gas phase processes and the film behavior illustrate our vision. To complete the document, we also discuss the present and future trends in the development of the PECVD processes and provide examples of important industrial applications using this powerful and versatile technology.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Reference289 articles.

1. Foundations of physical vapor deposition with plasma assistance;Gudmundsson;Plasma Sources Sci. Technol.,2022

2. Foundations of plasma surface functionalization of polymers for industrial and biological applications;Booth;Plasma Sources Sci. Technol.,2022

3. Carbon for electric lights;Sawyer,1880

4. Process of depositing nickel;Mond

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3