Radical-controlled plasma processes

Author:

Hori Masaru

Abstract

AbstractIn plasmas, a variety of radicals which are defined as electrically neutral radicals in this article are efficiently produced by collisions between electrons and gas molecules. These radicals can subsequently undergo gas phase reactions with solids, liquids and living organisms that result in non-equilibrium surface/interface physicochemical processes. The specific phenomena produced by these reactions remain largely unknown, even though these plasma-based processes could lead to disruptive technological innovations. As an example, in the case of semiconductor microfabrication processes, the density, energy and lifetime of individual radicals, as well as the reaction time constants of these species with various materials should be ascertained. This would allow the identification and control of the effective radical species during processes, such as the high-precision etching and deposition of functional thin films. In addition, the type of reactions occurring between radicals generated in plasmas with liquids or living organisms is still an unexplored area. Establishing a theoretical system for these radical reactions and controlling the associated mechanisms could lead to innovations in the fields of functional devices and materials as well as in the areas of environmental protection, medicine and agriculture/fisheries. Focusing on the non-equilibrium surface/interface physicochemical reactions between radicals and solids occurring in semiconductor plasma processing, this paper describes the formation of nanostructured thin films by top-down mechanisms based on controlled radical production and bottom-up processes involving radical-induced self-organization. As well, this review examines next-generation medical and agricultural applications, such as the selective killing of cancer cells and plant growth promotion and functionalization. These systems result from the interactions of radicals generated in atmospheric-pressure, low-temperature plasmas with liquids, or the interactions of gas or liquid phase radicals with biological species. Finally, the importance of academic research into radical-controlled plasma processes and potential future technologies based on this interdisciplinary field are examined.

Funder

Kakenhi

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3