Properties of millisecond-scale modulated pulsed power magnetron discharge applied for reactive sputtering of zirconia

Author:

Kaziev Andrey VORCID,Kolodko Dobrynya V,Sergeev Nikita S

Abstract

Abstract The electrical properties of a modulated pulsed power (MPP) magnetron discharge were experimentally and theoretically studied in case of reactive sputtering of metallic zirconium target in argon/oxygen mixtures. The high-power pulsing was assisted by pre-ionization provided by a low-power direct current (DC) magnetron discharge filling the pulse-off period. The ranges of stable discharge operation parameters (applied voltage and oxygen flow rate) were determined for pulse-on time of 3 ms and pulse-off time 100–1000 ms. The maximum stable peak power density was 2.1 kW cm−2. Strong dependence of the MPP discharge current waveforms on the pulse-off time was found, indicating the important role of the pre-ionizing DC discharge. In presence of oxygen, discharge peak current was observed with characteristic width up to 1.5 ms, followed by non-reactive-like plateau region. For theoretical treatment of the observed discharge current behavior, we modified the well-known Berg model of reactive sputtering by introducing the terms required for adequate description of time-dependent poisoning and sputtering processes. The reactive ion implantation term was also transformed to account for the process saturation at high ion current densities. Calculation results from the modified Berg model demonstrated good agreement between our experimental observations of discharge current evolution and target poisoning dynamics in the timescale of milliseconds.

Funder

Grant of the Russian Federation President

Russian Foundation for Basic Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3