Influence of strong Coulomb coupling on diffusion in atmospheric pressure plasmas

Author:

Acciarri M DORCID,Moore CORCID,Baalrud S DORCID

Abstract

Abstract Ion diffusion in atmospheric pressure plasmas is examined and particular attention is paid to the fact that ion–ion interactions can be influenced by strong Coulomb coupling. Three regimes are identified. At low ionization fractions ( x i 10 6 ), standard weakly correlated ion-neutral interactions set the diffusion rate. At moderate ionization fractions ( 10 6 x i 10 2 ) there is a transition from ion-neutral to ion–ion collisions setting the diffusion rate. In this regime, the effect of strong Coulomb coupling in ion–ion collisions is accounted for by applying the mean force kinetic theory. Since both ion-neutral and ion–ion interactions contribute a comparable amount to the total diffusion rate, models (such as particle-in-cell or fluid) must account for both contributions. At high ionization fractions ( x i 10 2 ), strongly correlated ion–ion collisions dominate and the plasma is heated substantially by a disorder-induced heating (DIH) process associated with strong correlations. The temperature increase due to DIH strongly influences the ion diffusion rate. This effect becomes even more important, and occurs at lower ionization fractions, as the pressure increases above atmospheric pressure. In addition to ion diffusion, DIH affects the neutral gas temperature, therefore influencing the neutral diffusion rate. Model predictions are tested using molecular dynamics simulations, which included a Monte Carlo collision routine to simulate the effect of ion-neutral collisions at the lowest ionization fractions. The model and simulations show good agreement over a broad range of ionization fractions. The results provide a model for ion diffusion, on a wide range of ionization fractions and pressures, solely considering the elastic contribution to the diffusion coefficient—as an illustration of how strong Coulomb coupling influences diffusion processes in general.

Funder

Sandia National Laboratories

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3